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Distributional Semantics

Semantics!
[John] = John

[works] =f: D — {0,1}
For all x € D, f(x) = 1 iff x works

[smokes] =f: D — {0,1}
For all x € D, f(x) = 1 iff x smokes
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Distributional Semantics

How about these?

o [smoke]

o [fog]

e [cloud]

What do the meanings of these words have in common?
How do they differ?
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Distributional Semantics

Why do we do Semantics anyway?

e Sometimes, we want to know the true meaning of words or phrases:
John means John, and nothing else.

e Other times, we look at how words interact in the real world:

(1) | can't breathe properly because of the

(2)  I'm cold from all the

(3) | couldn’t see anything due to the

(4) My clothes are wet from standing in the _______ for an hour.
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Distributional Semantics

Frames!
smoke fog cloud
source: fire water water
location: anywhere near the ground in the sky

colour: grey white
77

grey or white

Are some of these "more related" than others?
If so, why? How do we know?
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Distributional Semantics

cloud

smoke
fog
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Distributional Semantics

Humans can annotate salient features of these words!

Some problems:
e Annotators must be paid.

Annotation takes time.

Annotators don't agree with each other.

Annotators aren’t experts for everything.

Annotation is never finished.
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Distributional Semantics
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Distributional Semantics

You shall know a word by the company it keeps?

Words that co-occur with our terms in a context window of 5 tokens to

each side:
smoke | fog | cloud
breathe | 31 0 2
see 37 23 |15
cold 0 29 |11
fire 29 0 0
wet 6 24 | 14
white 70 19 | 19
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Distributional Semantics

But is it science if you just count words?
e No.

e The co-occurrence counts for "cloud" were lower than those for the
other two terms — probably because we talk about clouds less often

(in the corpus).

e We have to normalize the absolute co-occurrence counts with regard
to how frequent each word is on its own. A good way to do that is
pointwise mutual information (PMI).
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Distributional Semantics

You shall know a word by the relationships it commits to!

Similarity scores of the co-occurrences, where 1 is "identical" and 0 is "not
at all related™:

smoke | fog | cloud
breathe | 0.21 0 0.0014

see 0.40 0.39 | 0.39
cold 0 0.38 | 0.30
fire 0.40 0 0

wet 0.054 | 0.26 | 0.33

white 0.49 0.21 | 0.27
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Distributional Semantics

Why are "white' and "smoke" so similar?

e There can be conflicts between our distributional observations and
the semantics that we believe to be true.

e We are fairly sure that smoke is usually grey. ..

e ...but the only times people mention the color of smoke are when
that color is remarkable; for instance, when electing a new pope.

e In general, "truisms" are rarely observed in the corpus, so we will
miss some features of our terms!

e We say things that are unexpected more than we say things that are
normal!
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Distributional Semantics

Vectors in the wild

e Let's look at a little demo with English word vectors that | trained
on the ukWaC corpus for my MA thesis.

e If we have time, we can play around with the tool at https://
rare-technologies.com/word2vec-tutorial/#bonus_app) for
a bit.
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Distributional Semantics
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Distributional Semantics
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Distributional Semantics

smoke

fog

cloud
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Distributional Semantics

Getting started with distributional semantics

e If you want to just use existing vectors, you can download pre-trained
sets of them from the websites of the word2vec and GloVe projects.

e If you want to train your own vectors, you can download the code
for word2vec/GloVe and run it on your own data — attention: you
should probably run them on the HPC!

e If you just want to see some vector magic, you can check out the
"Bonus App" mentioned above.

e To visualize your vectors, try this code by Vered Schwartz: https://
www . quora.com/How-do-I-visualise-word2vec-word-vectors
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Distributional Semantics

What to read, what to cite
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Distributional Semantics

Introductory reading recommendations

e Jurafsky & Martin's Speech and Language Processing (https://
web.stanford.edu/~jurafsky/slp3/) is a good, easy-to-follow
introduction. Chapters 15 and 16 are especially relevant.

e Turney & Pantel's 2010 paper From Frequency to Meaning: Vec-
tor Space Models of Semantics (http://jair.org/media/2934/
live-2934-4846-jair.pdf)) is a more thorough primer on meth-
ods and theories around distributional semantics.
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Distributional Semantics

Useful practical references

e Levy, Goldberg & Dagan (2015): Improving Distributional Similarity
with Lessons Learned from Word Embeddings (http://www.aclweb.
org/anthology/Q15-1016)

e Bullinaria & Levy (2007): Extracting semantic representations from
word co-occurrence statistics: A computational study (https://
link.springer.com/content/pdf/10.3758%2FBF03193020. pdf)

e Bullinaria & Levy (2012): Extracting semantic representations
from word co-occurrence statistics: stop-lists, stemming, and SVD.
(https://link.springer.com/content/pdf/10.3758%2Fs13428~
pdf)
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Distributional Semantics

Other resources

e word2vec homepage: https://code.google.com/archive/p/
word2vec/

e GloVe homepage: https://nlp.stanford.edu/projects/glove/

e High Performance Computing at HHU: https://www.zim.hhu.de/
high-performance-computing.html
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Distributional Semantics

Okay, but who actually uses word vectors?

e People who do Machine Translation!

People who do Discourse Relation Classification!

People who do Information Retrieval!

People who do Parsing!

e ...and maybe you?
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Questions?




Distributional Semantics

Sources

What is a "Dog"? by David Marino (http://specgram.com/CLXXVI.4/03.marino.
dog.html)

Heim & Kratzer (1998): Semantics in Generative Grammar

Count von Count @ IMDb (http://www. imdb. com/character/ch0000709/mediaindex)
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